
Catching Transparent Phish:
Analyzing andDetectingMITMPhishing Toolkits

Brian Kondracki
Stony Brook University

bkondracki@cs.stonybrook.edu

Babak Amin Azad
Stony Brook University

baminazad@cs.stonybrook.edu

Oleksii Starov
Palo Alto Networks

ostarov@paloaltonetworks.com

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

ABSTRACT
For over a decade, phishing toolkits have been helping attackers
automate and streamline their phishing campaigns. Man-in-the-
Middle (MITM) phishing toolkits are the latest evolution in this
space, where toolkits act as malicious reverse proxy servers of
online services, mirroring live content to users while extracting cre-
dentials and session cookies in transit. These tools further reduce
the work required by attackers, automate the harvesting of 2FA-
authenticated sessions, and substantially increase the believability
of phishing web pages.

In this paper, we present the first analysis of MITM phishing
toolkits used in the wild. By analyzing and experimenting with
these toolkits, we identify intrinsic network-level properties that
can be used to identify them. Based on these properties, we develop
a machine learning classifier that identifies the presence of such
toolkits in online communications with 99.9% accuracy.

We conduct a large-scale longitudinal study of MITM phishing
toolkits by creating a data-collection framework that monitors and
crawls suspicious URLs from public sources. Using this infrastruc-
ture, we capture data on 1,220 MITM phishing websites over the
course of a year. We discover that MITM phishing toolkits occupy
a blind spot in phishing blocklists, with only 43.7% of domains
and 18.9% of IP addresses associated with MITM phishing toolkits
present on blocklists, leaving unsuspecting users vulnerable to these
attacks. Our results show that our detection scheme is resilient to
the cloaking mechanisms incorporated by these tools, and is able
to detect previously hidden phishing content. Finally, we propose
methods that online services can utilize to fingerprint requests origi-
nating from these toolkits and stop phishing attempts as they occur.
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1 INTRODUCTION
The combination of a username and password is the default gate-
keeper to nearly all online services that users interact with, on a
daily basis. It is therefore no surprise that this sensitive informa-
tion is in high demand among malicious actors who go to great
lengths to obtain it, in order to access sensitive information and
act on behalf of victims. One of the most commonly used methods
of acquiring this information is through social engineering, in the
form of phishing. Phishers impersonate trustworthy entities in an
attempt to lure victims into disclosing private information, such as
account credentials and banking information.

Traditionally, phishingwebsites were hosted entirely on attacker-
owned and compromised web servers where attackers would host
realistic-looking copies of their target websites in hope of convinc-
ing users to disclose their credentials. These credentials were stored
either on the original server or communicated to the attacker (e.g.
via an email) for later abuse [57]. These rudimentary phishing se-
tups required substantial effort on behalf of attackers to clone target
websites, make the necessary content-modification to make these
sites operational, and repeat this entire process to match updates
to the UI of the target website.

To reduce the effort required by attackers to create and serve
phishing content, all-in-one phishing toolkits began to overtake
traditional setups. These toolkits revolutionized how phishing web-
sites are created by automatically fetching static copies of web
pages from targeted websites, serving them to victims, and prevent-
ing detection through cloaking mechanisms—all while requiring
minimal effort by attackers [50]. However, the increasing adoption
of two-factor-authentication (2FA) mechanisms by online services,
and the rapid evolution of web content has increased the need
for phishing toolkits to adopt real-time mechanisms in place of
antiquated static content.

These limitations fueled the proliferation of a new generation
of Man-in-the-Middle (MITM) phishing toolkits [8, 14, 15]. These
next-generation phishing toolkits act as malicious reverse proxy
servers, forwarding requests and responses between the victim
and the target web server, while extracting credentials and session
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cookies in transit. This eliminates the need to create and maintain
realistic phishing web pages (the phishing page is now a “perfect”
copy of the victim website) as well as manually communicating
with the target website to send the user credentials and 2FA codes
to obtain the authenticated session cookie. Moreover, because of
the continuous proxying of requests and responses, these tools
greatly increase the believability of the attack by allowing users to
continue browsing the phishing site after they authenticate, as if
they are truly interacting with the target site.

In this work, we present the first analysis of this new generation
of phishing toolkits. We study 13 versions of popular MITM phish-
ing toolkits and present a methodology to fingerprint them in the
wild, both from the perspective of a user interacting with a phishing
website, as well as the target website receiving login attempts from a
toolkit impersonating a regular user. We produce a globally-diverse
dataset of laboratory MITM phishing toolkit deployments, detailing
their network-level characteristics. Using this dataset, we develop
a machine learning classifier that leverages the network timing dis-
crepancies inherent to reverse proxy servers to detect the presence
of MITM phishing toolkits with 99.9% accuracy. We show that our
classifier is robust to changes made by attackers to thwart finger-
printing attempts, and we demonstrate the ability of our classifier
to detect unseen phishing toolkits. By proposing fingerprinting
methods that uniquely identify MITM phishing toolkits, we en-
hance the ability of web-service providers to pinpoint malicious
login requests and flag them before authentication is completed.

To automate the discovery and analysis of MITM phishing toolk-
its on the web, we create a fingerprinting tool whichwe call PHOCA.
PHOCA can be directly integrated into current web infrastructure
such as phishing blocklist services to expand their coverage on
MITM phishing toolkits, as well as popular websites to detect ma-
licious requests originating from MITM phishing toolkits.

Using PHOCA, we study the usage trends of these tools in the
wild over the course of a year, discovering 1,220 websites utiliz-
ing MITM phishing toolkits targeting popular services including
Google, Yahoo, Twitter, and Facebook. We observe that, due to their
highly-targeted nature and cloaking mechanisms, MITM phishing
toolkits occupy a blind spot in current phishing blocklists, as only
43.7% of domains and 18.9% of IP addresses associated with the
MITM phishing toolkits we discovered appear on popular block-
lists. Additionally, through our collaboration with Palo Alto Net-
works, we find that enterprise users are targeted by MITM phishing
toolkits, with 260 of our discovered phishing sites receiving 6,403
customer requests over a six-month period.
In summary, the contributions of this paper are as follows:

• We present the first, in-depth study of MITM phishing toolkits.
• We propose a machine learning classifier that utilizes network-
level features to classify phishing websites hosted by such
toolkits with 99.9% accuracy.

• We develop a MITM phishing toolkit fingerprinting frame-
work, called PHOCA, that can collect data on and classify
MITM phishing toolkits on the web.

• We use PHOCA to explore the use of MITM phishing toolkits
in the wild and find that current phishing blocklists do not
effectively report these malicious websites.

• We show how these toolkits can be identified from both the
perspective of the victim user and target web server.

Figure 1: Architecture of MITM phishing toolkits.

2 BACKGROUND
In this section, we provide background information onMITM phish-
ing toolkits and the threat model we consider in this paper.

2.1 Reverse Proxy Servers
Reverse proxy servers are front-end web servers that perform all
direct communication with each web client. They are utilized in a
variety of use cases from load balancing, to providing authentica-
tion for services residing on private networks. These servers act
as “middlemen,” brokering connections between users and backend
web servers. Typically, TLS connections are terminated at reverse
proxy servers, thereby decreasing the complexity of configuring
TLS certificates for website administrators by creating a single con-
figuration point. Some of the most popular reverse proxy servers
today are: Squid [22], Nginx [17], and Apache Traffic Server [2].

2.2 MITMPhishing Toolkits
MITM phishing toolkits function as reverse proxy servers between
victims and one or more target web servers. These toolkits act as
web servers when communicating with victims, and clients when
communicating with target web servers. Figure 1 shows the general
architecture of MITM phishing toolkits.

This design lends itself to increased believability of the phish-
ing attack since the returned web pages are live on the target web
server and thus indistinguishable to the victim. Additionally, unlike
traditional phishing attacks, where believable behavior ceases after
the desired information (e.g. credentials and credit card numbers)
is acquired, these toolkits persist the victim’s browsing session
after authentication is complete. This means users can browse the
target website with their authenticated session through the phish-
ing server. This puts the victim at ease and increases the timespan
that the session cookie is valid, allowing the attacker more time to
conduct their desired malicious actions.

One powerful use of these toolkits is to compromise user ac-
counts that are protected by 2FA mechanisms. When credentials
are provided by victims, they are simply read and saved for later
use before being forwarded to the target web server. The target
web server will then either send a 2FA code to the user through
a separate, pre-established communication channel (such as SMS
text and email) or rely on a mobile app/hardware token to generate
such a code at the client side. In both cases, the client then submits
that code to the phishing toolkit, where it is again forwarded to the



Table 1: Comparison of network-level to application-level fingerprint-
ing in response to popular cloaking techniques. ✓/✗ indicates the
fingerprinting technique would succeed or fail against the specified
cloaking technique, respectively.

Cloaking Type Application-Layer Network-Layer

URL Obfuscation ✗ ✓

User Interaction ✗ ✓

Fingerprinting ✗ ✓

Bot Activity ✗ ✓

IP Address ✗ ✗

target web server. When authentication is completed, the session
cookie provided by the target web server is saved by the MITM
phishing toolkit, enabling attackers to now send authenticated re-
quests in the name of the victim.

2.3 Threat Model
Like a typical phishing attack, attackers who utilize a MITM phish-
ing toolkit need to deploy it on a web server and send a link to that
web server to their potential victims.

As Figure 1 shows, victims communicatewith the phishing server
over an HTTPS connection. Even though in theory, an HTTPS con-
nection between the user and the phishing server is not necessary,
modern web browsers show a barrage of warnings for websites that
are visited over HTTP, particularly when the user is providing input
in HTML forms. Therefore, all of the MITM phishing toolkits that
we study in this work use valid TLS certificates for their phishing
pages.All requests made to the phishing server are forwarded along
to the target web server, including malformed requests as well as
requests towards non-existing resources. Connections between the
phishing server and target web server are made over an additional
HTTPS connection, where the phishing server takes the role of a
web client. All traffic between the victim and target web server is
available in cleartext to the attacker.

Due to the server-side cloaking mechanisms utilized by MITM
phishing toolkits, only intended victims see malicious content. This
thwarts all content-based phishing detectors, which require access
to the phishing content. We note that organizations with inline
access to network communications can view phishing content tar-
geted at their users. However, due to attackers’ complete control
over the data in the application layer, content-based phishing detec-
tion from this vantage point is still prone to failure. We therefore
must ensure that all methods employed to detect the presence of
these toolkits do not depend upon the integrity of proxied data.

Table 1 demonstrates the effectiveness of network-layer and
application-layer fingerprinting against cloaking techniques used
by attackers today [38, 50, 51]. As application-layer fingerprinting
requires access to phishing content, it is thwarted by all widely-used
cloaking categories. Network-layer fingerprinting, on the other
hand, analyzes features of the network connection and web server
in question, making it effective against all categories except IP-
based cloaking. However, it should be noted that IP-based cloaking
would bypass any form of detection/fingerprinting that originates
from an IP address considered to be suspicious from the point of
view of an attacker.

3 MITMPHISHING TOOLKIT CLASSIFIER
In this section, we first describe the three MITM phishing toolkits
that we evaluate and the functionality that they offer to attackers.
We then provide the details of the training and validation process
used to create a classifier for detecting these toolkits.

3.1 MITMPhishing
Toolkit Identification and Collection

Prior to studying MITM phishing toolkits, it is important to decide
upon a definition that accurately describes their functionality. For
the scope of this paper, we define a MITM phishing toolkit as a
reverse proxy server that mirrors a target web page to a victim
while harvesting credentials, 2FA codes, and web page content in
transit. The important distinction between these toolkits and other
phishing tools is the continuous proxying of user traffic to and from
the target web server, pre- and post-authentication.

Using this definition, we searched for all MITM phishing toolk-
its on popular hacker forums and code repositories, both on the
clear web as well as on Tor [24]. Through this search, we iden-
tified three MITM phishing toolkits: Evilginx [8], Muraena [15],
and Modlishka [14]. We also discovered similar toolkits such as
CredSniper [6] and Reelphish [20]. However, as these do not proxy
user traffic to the target web server (i.e. they do not act as MITM
phishing toolkits), we consider them as out of scope for this work.

3.2 MITMPhishing Toolkit Functionality
While all currentMITMphishing toolkits have a similar architecture
and share common goals, there are differences in their feature-sets
that influence their popularity among attackers.

Evilginx. Of the toolkits studied in this paper, Evilginx is the
easiest to operate due to its command-line interface which is used
to configure most aspects of the phishing server. Additionally, along
with hosting a web server, Evilginx also hosts its own DNS server
and automatically creates all TLS certificates needed using the Let’s
Encrypt [12] API. This significantly lowers the barrier of entry for
attackers, allowing even the least technically adept to launch their
own phishing campaigns. Evilginx is also the only tool of the three
studied that allows attackers to host multiple phishing pages simul-
taneously. Each individual phishing page responds to a subdomain
of the primary domain provided by the attacker. Code listing 1 in
the Appendix shows an example configuration file for Evilginx.

Evilginx allows attackers to launch highly targeted attacks, and
cloak their actions from anyone but the intended victim. This cloak-
ing is accomplished by generating tokenized URLs, referred to
internally as lures. These unique URL parameters must be included
in requests to view the phishing content. An example of a tokenized
URL generated by Evilginx is as follows: https://evil.com/xICcxSqs,
where the phishing domain name is followed by a random token.
All requests missing valid tokens are redirected to a web page of
the attacker’s choice. Attackers can also quickly disable individ-
ual tokens, preventing even tokenized URLs from responding with
phishing content. These features effectively cloak the presence
of Evilginx, increasing the uptime of campaigns before they are
detected and subsequently halted through blocklisting.
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Figure 2: Ratio of TCP SYN/ACK to valid and malformed HTTP GET Request RTTs over (a) HTTP and (b) HTTPS. (Muraena is not present in plot
(a) since it does not respond to HTTP requests.)

This diverse feature-set has led to a surge in the popularity of this
tool among attackers, and an increased attention from anti-virus
services. According to VirusTotal, eight different antivirus products
mark Evilginx as malicious [26]. This finding demonstrates the dual
nature of these types of toolkits where the very same tools that can
be used in the context of a legal penetration-testing engagement,
are also used by attackers when they break into servers.

Modlishka. Modlishka is a bare bones approach to a MITM
phishing toolkit. Unlike Evilginx, it is limited to targeting one do-
main at a time and does not provide a command-line interface for
configuration. Also, it is up to the attacker to provide a certificate, as
Modlishka is only capable of automatically generating self-signed
certificates. Modlishka can also be configured to remove all encryp-
tion and security headers from requests to target web servers.

Muraena. While Evilginx and Modlishka require the attacker
to manually create configuration files detailing the domains and
HTML attributes that should be replaced or removed from requests
and responses, Muraena automates this process using a web crawler.
Additionally, Muraena automates post-compromise actions that an
attacker would want to execute such as, changing passwords and
exfiltrating data. This is done using a companion tool called Necro-
browser [16]. This tool takes the session cookies extracted using
Muraena and launches an instrumented Chrome instance using
the Chrome DevTools Protocol, to perform the desired malicious
actions on the target website without attacker intervention, greatly
increasing the effectiveness of phishing campaigns.

3.3 Exploratory Data Analysis
As described in Section 2.3, the unique architecture of MITM phish-
ing toolkits allows attackers to create impersonating web pages that
effectively fool victims into providing their credentials. However,
this architecture also introduces discrepancies in packet round-trip-
times (RTTs), enabling the fingerprinting of these toolkits at the
network level. As two distinct HTTPS sessions must be maintained
to broker communication between the victim user and target web
server, the ratio of various packet RTTs, such as a TCP SYN/ACK
request and HTTP GET request, will be much higher when com-
municating with a reverse proxy server than with an origin web
server directly [45]. This ratio is further magnified when the re-
verse proxy server intercepts TLS requests, which holds true for
MITM phishing toolkits. Intuitively, this can be attributed to HTTP

requests propagating through to the target web server, while TCP
SYN packets are answered directly at the MITM phishing toolkit.

To verify the efficacy of these timing discrepancies in identifying
MITM phishing toolkits, we perform a series of exploratory mea-
surements.We record the RTTs of TCP SYN/ACK packets andHTTP
GET requests to each toolkit as well as an Apache [3] web server
under our control. We make both valid and malformed requests
in order to entice a direct response from the toolkits rather than a
proxied response from the target web server. The results from this
experiment are shown in Figure 2. The four cumulative distribution
functions represent the ratio of TCP SYN/ACK requests to valid
and malformed GET requests made over HTTP and HTTPS. Here,
smaller ratio values indicate that the two requests are answered
by the same physical machine, while larger ratio values imply re-
sponses to GET requests are sent by amachine at least one hop away
from the machine that responded to the TCP SYN request (i.e. an ori-
gin server situated behind a reverse proxy). We find that each of the
MITM phishing toolkits can be clearly distinguished from the direct-
server distribution in at least one of the four evaluated RTT ratios.

3.4 MITMPhishing Toolkit Classifier
Motivated by the results from our exploratory analysis, we develop
a machine-learning-based classifier trained on data gathered from
real-world websites and each of the MITM phishing toolkits in a
laboratory setting.

Feature Engineering

As mentioned in Section 2.3, all content viewed on the client de-
vice is at the complete control of the attacker, making any features
present in the application layer easily modifiable. Thus, when de-
signing our classifier, we focus on features inherent to the nature
of the man-in-the-middle architecture present in the toolkits. Using
these types of features provides us with a robust and powerful
classifier that is not only effective at the time of writing, but is also
adaptable to changes in existing tools as well as future tools.

To this end, we divide our feature set into Network Timing Fea-
tures, and TLS Library Features.
•Network Timing Features: As described in Section 3.3, we use
the RTT ratios of various points in TCP and TLS handshakes, as
well as HTTP GET requests. We make both valid and malformed
HTTP requests in order to solicit proxied and direct responses
respectively from MITM phishing toolkits.



Figure 3: Architecture of experimental framework used to collect
network timing data of MITM phishing toolkits.

• TLS Library Features: Since MITM phishing toolkits typically
do not use the same web or reverse proxy server software as benign
websites, they make use of different TLS libraries to handle HTTPS
connections from clients. We therefore use TLS implementations as
a distinguishing factor. We treat each TLS version supported by the
current web server as a binary feature in our classifier. Additionally,
we use the TLS fingerprinting tool TLS Prober [23] to identify the
TLS library utilized by the current web server based on the format of
TLS packets it transmits. TLS Prober determines the library used by
aweb server via a series of TLS Client Hello packets. By analyzing
the format of each server response, the TLS library implementation
can be determined. TLS Prober returns a map of TLS libraries to
the probability each library is used by the web server in question.
We treat each potential TLS library, and its associated probability,
as a numeric feature in our classifier. Since TLS Prober does not
make predictions off of configurable options, such as cipher suites,
an attacker attempting to bypass this fingerprinting would need to
re-engineer the entire TLS integration of a MITM phishing toolkit
and somehow mimic the TLS stack of a real web server.
By heavily relying on features deeply embedded into the architec-
ture of MITM phishing toolkits, our classifier is largely future-proof
and toolkit-agnostic. More specifically, of the 199 features our clas-
sifier is composed of, 14 are network timing features, and 185 are
TLS library features. Table 7 located in the Appendix shows our
full list of features.
Dataset Collection
Websites on the Internet are served from a variety of different net-
work architectures. More specifically, client requests are routed
either directly to web servers, or through reverse proxies in the
form of load balancers and CDNs. To effectively distinguish MITM
phishing toolkits from benign websites of these categories, we
collect ground-truth data from each of the following groups:
1. Non-ProxiedWeb Pages: To gather a list of websites with the
highest likelihood of being served directly by a web server without
an intervening proxy server, we use a heuristic of domains pointing
to IP addresses of the cloud-hosting providers Digital Ocean [7]
and Linode [13], as well as websites of local small businesses. The
aforementioned cloud-hosting providers are popular because they
offer simple virtual private servers, as opposed to the vast array
of products and services (including CDNs and load balancers) that
larger cloud-hosting providers (such as AWS and Google Cloud)
offer. We therefore reason that websites hosted on these platforms
are most likely hosted directly by origin servers. Similarly, because
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of the low traffic volume that the websites of local businesses attract
(such as local restaurants) we argue that they are highly unlikely
to be paying for load balancing and CDNs.
2. Reverse Proxy Web pages: We utilize the public IP address
range of Cloudflare [5] (one of the most popular anti-DDoS, CDN
services) to curate a list of benign websites hosted behind a reverse
proxy server. We use reverse DNS lookups on each IP address in the
Cloudflare subnet to gather a list of Cloudflare-managed domains.
3. MITM Phishing Toolkit Web pages: As the RTT of requests
will vary across different geographic distances, it is important to
collect network timing data from a large number of vantage points.
To accomplish this, we design a data collection methodology mod-
eled after the work of Alexander [29]. More specifically, we launch
30 globally distributed nodes hosted on AWS [1], where each node
hosts a web client, the three phishing toolkits, and an Apache
web server simultaneously. This globally distributed infrastructure,
visualized in Figure 3, allows us to record network timings for
many of the potential geographic distributions of victim→phishing
toolkit→target web server permutations. For example, our infras-
tructure allowed us to obtain measurements that included the three
parties (victim, phishing toolkit, and target web server) all being
located in North America, as well as the victims being located in
Asia, having their traffic proxied by an EU-residing phishing server,
onto a US-based target web server.

In each permutation, Node A sends an HTTP GET request to the
port of a phishing toolkit on Node B, where it is then forwarded
to the Apache web server hosted on Node C. Since it is unlikely
for a phishing toolkit to exist on the same host as a target web
server or victim user, we exclude these scenarios. This leaves us
with n(n−1)(n−2), or 24,360 permutations per toolkit. Since we
record data on three toolkits, we obtain a total of 73,080 network
measurements for the evaluated MITM phishing toolkits.

We compile a ground-truth dataset composed of all facets of
each tool’s requests and responses as well as benign websites. In
total, we collected 73,080 network requests from the MITM toolkit
and benign categories, for a total of 146,160 data points.

3.5 Model Training and Validation
Using our compiled ground truth data, we constructed training and
testing datasets with a 1:1 phishing-to-benign ratio.We then trained
a Random Forest classifier with a minimum sample split of 2 and 100



Table 2: Model performance when training on oldest release of each
MITM phishing toolkit and testing on all subsequent releases.

Accuracy Precision Recall

A. Restrict classifier to individual feature groups
Network Timing 98.5% 98.5% 98.5%

TLS 99.9% 99.9% 99.9%
Total 99.9% 99.9% 99.9%

B. Training on oldest release, testing on newer releases
Evilginx v2.0 98.6% 100% 97.9%
Muraena v0.1 87.7% 100% 85%

Modlishka v1.0.0 99.8% 100% 99.8%
C. Exclude specified toolkit data from training dataset

Evilginx 97.5% 100% 97.5%
Muraena 96.4% 100% 96.4%
Modlishka 99.8% 100% 99.8%

estimators. We empirically determined that these hyperparameters
provide us with the highest accuracy as well as lowest false positive
and negative rates. We chose a Random Forest classifier because of
its proven track record for security-related applications [30, 33, 48,
54, 56] while still maintaining a level of explainability, not found in
other types of machine-learning classifiers. We achieve an accuracy
score of 99.9% and a five-fold cross validation score of 99.9%.

Model Feature Importance

To ensure our classifier does not overfit on a small subset of pow-
erful toolkit-specific features, we study the decrease in accuracy as
well as the increase in false positive and false negative rates as we
iteratively remove the most important features.

Figure 4 demonstrates the decay in model effectiveness while
iteratively removing the most important feature and retraining. The
shaded regions represent the percentage of features from each of
the TLS and network timing categories removed throughout the
experiment. We observe that this feature removal does not have sig-
nificant effects on our classifier as the accuracy remains above 97%
even after removing the top 150 most important features. Further,
Table 2A shows the performance when restricting the classifier to
only one of the feature groups at a time (e.g. training using just
network-timing features and ignoring TLS). Our classifier continues
to perform well with each feature group isolated, demonstrating
that it is not dependent upon a small group of features, but rather
the entire ensemble of features as a whole. As a result, we argue
that even if attackers are aware of our tool’s presence, it will not be
trivial to evade detection by selectively patching individual features.
Model Generalizability

Utilizing network-level features increases the robustness of our
classifier against many of the modifications attackers can make
to thwart fingerprinting attempts. However, we seek to create a
classifier that is not only effective in detecting the three identified
toolkits in their current form, but is also generalizable to updates
to the existing toolkits as well as toolkits created in the future.

We test the effect of MITM phishing toolkit updates on model
performance by downloading all releases of the three MITM phish-
ing toolkits, dating up to two years old, and collecting data on each
using the same methodology described in Section 3.4. We then

train our classifier on the oldest release available of each toolkit
along with known non-MITM phishing toolkit data, and test on the
remaining releases. In total, we collected 13 MITM phishing toolkit
versions with Evilginx, Muraena, and Modlishka having four, seven,
and two versions respectively. The results of this experiment are
shown in Table 2B. We find that, generally, the network-level fea-
tures of each toolkit remain constant through incremental updates.
The only exception to this is Muraena, which included support for
HTTP requests in the most recent release (version 0.3) with prior
releases only answering HTTPS requests. This discrepancy in be-
havior leads to the observed dropoff in performance. However, this
experiment represents a worst-case-scenario for defenders where
the classifier is not updated to match changes in the MITM phishing
toolkit space for multiple years.

To measure our classifier’s performance when encountering a
previously unknown MITM phishing toolkit, we iteratively remove
each toolkit’s data from our training set, leaving only the two re-
maining toolkits and known non-MITM phishing toolkit data. We
then trainwith this new dataset, and test with the toolkit whose data
we left out. This excluded data effectively acts as a new toolkit, pre-
viously unknown to the classifier. The results of this experiment are
shown in Table 2C. We find that the accuracy of our classifier drops
by less than 2% when testing on data from a completely unknown
MITM phishing toolkit. As network architecture is constant across
all MITM phishing toolkits, our classifier maintains consistently
high performance regardless of the introduction of unfamiliar data.

3.6 PHOCA: MITMPhishing Toolkit Detection
Utilizing the previously described machine learning classifier, we
develop a tool to automatically collect data on, and classify MITM
phishing toolkits on the web. We call this tool PHOCA, after the
Latin word for “seal.” Seals are aquatic mammals known to hunt
hidden prey using vibrations generated by their breathing. Similarly
to this hunting technique, PHOCA can detect previously-hidden
MITM phishing toolkits using features inherent to their nature, as
opposed to visual-cues.

When provided either a URL or domain-name, PHOCA probes
the desired web server to collect the previously mentioned network-
level features. PHOCA then uses our trained classifier to determine
if the web server is a MITM phishing toolkit. Using this tool, new
training data can be easily generated for any future MITM phish-
ing toolkit iteration. Additionally, PHOCA can be integrated into
existing anti-phishing workflows to fingerprint active threats.

4 DISCOVERING
MITMPHISHING SITES IN THEWILD

Using PHOCA, we conduct a large-scale search for MITM phishing
toolkits in the wild. We seek to determine the online presence of
these tools, and uncover patterns in their usage. This allows us to
expose the source of phishing campaigns leveraging these tools, as
well as targeted users and trademarks.

We start by designing and implementing a URL crawling infras-
tructure that visits thousands of potential phishing web pages each
day, recording information about them, and classifying them as a
MITM phishing toolkit or not.



Figure 5: Architecture of framework used to collect network data on real worldMITM phishing websites.

4.1 PhishingWebsite Crawling Infrastructure
We design a URL crawling infrastructure that visits phishing web-
sites as they are created. Our crawlers collect information about
each website and a label using PHOCA.

URLCollection

To obtain a comprehensive view into the MITM phishing ecosys-
tem, we crawl URLs from popular open-source phishing databases
(Phishtank [19] and OpenPhish [18]), as well as Certificate Trans-
parency logs [4]. We utilize the Facebook Certificate Transparency
Phishing API [9] to receive alerts for certificate registrations of
impersonating domain names. Additionally, we supplement this
source with our ownCertificate Transparency log parser which uses
regular expressions to search for combosquatting domains [40]. In
total, we search for impersonating domains of 22 trademarks using
Certificate Transparency (full list of trademarks can be found in Ta-
ble ?? in the Appendix). We note that both Facebook’s and our own
Certificate Transparency log parsers do not classify MITM phish-
ing websites, but rather search for domain names that appear to be
impersonating known trademarks. We use all URLs and domains
provided from each source as input to our crawling infrastructure
to find MITM phishing websites deployed in the wild.

It is important to note that our reliance on Certificate Trans-
parency and phishing lists excludes, by design, any test deploy-
ments of the evaluated MITM phishing toolkits by security analysts
and researchers. Namely, we argue that setting up a subdomain
or purchasing a domain name that matches the target site and de-
ploying a phishing toolkit there, crosses the line between benign
and malicious. Had we used Internet-wide scanning tools (such as
ZMAP [35]) to identify MITM phishing toolkits, we would not be
able to reliably differentiate between test deployments and deploy-
ments by attackers.

We also note that our use of Certificate Transparency logs limits
us to only domain names rather than full URLs, which are typi-
cally available on phishing blocklists. However, since PHOCA uses
network-level features to discover MITM phishing toolkits, we do
not require access to phishing content. This is a strength of our de-
tection technique, as we are intuitively fingerprinting the phishing
web server rather than the phishing content, as is the case with
traditional phishing detection.

Crawling Infrastructure

Figure 5 presents a high-level view of our URL crawling infras-
tructure. (1) Our queue-based system takes as input URLs from a

number of sources, including phishing blocklists and impersonat-
ing domains found on the Certificate Transparency logs, and (2)
dispatches one of our crawlers to collect data on the corresponding
website in real time. Each crawler consists of two modules: a head-
less Selenium [21] browser, and a PHOCAworker. For each website
encountered, we record the following information: i) HTML and
screenshot of landing page, ii) TLS certificate offered to our browser,
iii) original and redirected (if applicable) domain IP address, and
iv) original and redirected (if applicable) classification.

(3) This data is forwarded to the analysis module which clusters
web pages based on their content, assisting in the manual verifica-
tion of the classifications made by our model. Furthermore, using
information such as TLS certificates, web server IP addresses, and
domain names allows us to uncover connections between seemingly
independent phishing websites and cluster individual phishing sites
into phishing campaigns.

(4) Our system also utilizes time-based re-queuing to record data
on websites previously crawled in order to map the life cycle of
MITM phishing websites over time. We make use of this when
crawling domains from the Certificate Transparency logs. Since
these domains are captured as soon as their certificates are cre-
ated, there is a high probability that there will be no web server
responding to requests at that moment. Thus, we re-crawl all such
domains periodically following their initial recording. Moreover,
we re-crawl all URLs classified as one of the phishing tools in order
to measure how long these websites remain active after creation.

4.2 Experimental Evaluation and Results

MITMPhishing Toolkit Presence

We deployed our phishing website crawling infrastructure for 365
days fromMarch 25, 2020 to March 25, 2021. This period was broken
up into two phases. The first phase was an exploratory one which
included URLs from both Certificate Transparency as well as the
phishing URL databases OpenPhish and PhishTank. We used this
phase to determine the most effective sources to capture MITM
phishing websites.

During this first phase, we captured 17 MITM phishing websites
from the URLs reported by OpenPhish and PhishTank, compared
to the 189 captured from the domains reported by Facebook’s Cer-
tificate Transparency API. We find that the highly targeted nature
of attacks conducted using MITM phishing toolkits makes it diffi-
cult for user-curated blocklists to effectively report these websites
in a timely manner. Furthermore, the cloaking abilities of MITM
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Figure 6: Number of MITM phishing websites identified each month
of our data collection period.

Figure 7: Geographic locations of MITM phishing websites. Larger
circles indicate more IP addresses in a given area

phishing toolkits make it such that only victims possessing the to-
kenized URL will see the malicious content, while all other visitors
are redirected to a benign website. This further complicates the task
of identifying and blocklisting these websites as existing crawlers
will never observe the malicious content.

Preemptively scanning potential phishing websites from sources
such as Certificate Transparency is clearly the most effective way to
detect attacks from these toolkits before damage is done. Thus, after
our exploratory phase, we remove Phishtank and OpenPhish from
our URL sources, opting to focus our infrastructure’s resources on
an additional Certificate Transparency source (to supplement Face-
book’s Certificate Transparency feed, as mentioned in Section 4.1).
During this second phase, PHOCA labeled 6,875 sites as operated
by MITM phishing toolkits, 849 from Facebook’s Certificate Trans-
parency API and 6,026 from our own Certificate Transparency Log
parser. For brevity, we will refer to these two sources as Certificate
Transparency for the remainder of this paper.

Upon completion of the second phase, we manually inspected
the data collected on each website labeled as a MITM phishing
toolkit to remove false positives. We did this by analyzing the
screenshot, HTML, and classification data of each positively labeled
phishing website and confirming that the content targets a popular
trademark, and the network-level data matches the profile of a
MITM phishing toolkit. In total, we identified 5,861 false positives
from a total of 7,081 positive classifications, and promptly removed
them from our dataset before conducting any further data analysis.
Throughout our recording period, we classified 841,711 web pages,
meaning PHOCA had a 0.6% false positive rate during our data
collection period—approximately sixteen per day, on average.

Table 3: MITM phishing websites discovered per autonomous system

Autonomous System IPs Domains

Amazon.com, Inc. 162 136
DigitalOcean, LLC 160 386
Microsoft Corporation 62 165
Google LLC 37 61
Versatel Deutschland GmbH 15 1
Choopa, LLC 14 50
OVH SAS 13 38
Linode, LLC 9 40
HKT Limited 8 1
Other 150 354

Through close inspection of all false positives in our dataset, we
find 5,298 belong to domain parking services, 5,158 of which belong
to the domain parking service sedo.com. By analyzing the network
timings and TLS fingerprints of sedo.com web pages, we infer that
this service utilizes a reverse proxy infrastructure with similar net-
work timing properties to MITM phishing toolkits. In practice, a
web page classification system such as ours would benefit greatly
from a pre-filtering step to remove common sources of misclassifica-
tion. The addition of such a step that can filter websites that resolve
to an IP address in the autonomous system of a domain parking
service would leave only 563 false positives during our entire data
collection period. This would result in an adjusted false positive rate
of 0.067% or two false positives each day. This is in line with the re-
sults of our classifier in a laboratory setting (described in Section 3).

The remaining false positives consist of sites that we could not
verify as being malicious based on our verification methodology.
These consist of 230 empty or error web pages and 333 seemingly
benign web pages that were included based on the similarity of their
domain to a popular trademark that we followed. We theorize that
these websites use a network architecture similar to that of MITM
phishing toolkits with reverse proxy or caching servers. We note
that these sites do not redirect visitors (e.g. for cloaking purposes),
which could act as a second-level check to prevent false positives.

In total, we discovered 1,220 verified websites operated by MITM
phishing toolkits over our entire data collection period, shown in
Figure 6.We observe an upward trend in the number ofMITMphish-
ing toolkits discovered each month of our data collection period.
This implies an increase in adoption of these toolkits by attackers—
a trend we anticipate to continue into the future. We note a drop
in the number of MITM phishing websites discovered in December
2020. We discovered that during this month, we received signifi-
cantly fewer phishing URLs from our Certificate Transparency log
API sources. However, we observe that the ratio of true positives to
all phishing URLs in this month is consistent with all other months
in this upward trend.
MITMPhishingWebsite Locations
We use the collected IP addresses to map each MITM phishing
website we encountered, both in terms of its geographical loca-
tion as well as the autonomous system in which the server hosting
the toolkit belongs. This information allows us to identify hosting
patterns as well as potential victims.

Figure 7 shows the geographic distribution of IP addresses as-
sociated with MITM phishing websites discovered by our crawling
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Figure 8: (a) Days between MITM phishing domain registration and detection by our system (b) Hours before MITM phishing websites captured
fromCertificate Transparency logs go online (b) DaysMITM phishing sites remain active

infrastructure. We find that while MITM phishing toolkits are in use
around the world, most instances are located in North America and
Europe. Further, these locations correspond to areas with large con-
centrations of hosting providers. We confirm this in Table 3 which
shows the top autonomous systems in which MITM phishing web-
sites were found, composed mostly of popular hosting providers.

The ability for attackers to quickly launch and remove cloud
servers on hosting providers makes them a popular location for
MITM phishing websites. In addition, since these toolkits attempt to
impersonate real websites, being located on popular web hosting in-
frastructure could thwart security scanners searching for websites
hosted in low-quality autonomous systems.

MITMPhishingWebsite Life Cycle

By utilizing WHOIS information, we are able to determine how
long domains associated with MITM phishing websites were active,
before they were discovered by our crawlers (Figure 8a). We find
that most domains associated with MITM phishing websites were
registered within the year prior to detection with 45.3% of domains
being registered in the week of their detection.

Additionally, due to our infrastructure’s re-crawling module,
can determine the life cycle of MITM phishing websites from their
creation to deletion. As mentioned in Section 4.1, when our data
collection infrastructure receives a potential phishing domain from
Certificate Transparency, it recrawls that domain every 3-6 hours
(depending on the load of our system) for the following 2 days.
Thus, we are able to determine how long it takes for a MITM phish-
ing website to be ready to receive requests from victims after its
certificate is created. Moreover, as our system continually recrawls
all positively labeled MITM phishing websites, we are able to deter-
mine the amount of time these sites remain online after they are first
observed. Figure 8b shows the number of hours it took MITM phish-
ing websites in our dataset to come online after the creation of their
TLS certificates. We find that all MITM phishing websites respond
to requests within one day, with over 90% responding immediately.

Phishing campaigns utilizing traditional methods and tools are
typically short lived, staying online for less than one day on aver-
age [52]. Given the fidelity of content that MITM phishing toolkits
present to users in addition to their post-authentication operation
and built-in evasion mechanisms (described in Section 3.2), we ex-
pect that the lifespan of such websites is higher than traditional
phishing campaigns. Figure 8c shows the number of days MITM
phishing websites in our dataset remain online after first discovery.

Table 4: Popular trademarks targeted byMITM phishing toolkits.

Brand #Websites Example Domain
Instagram 298 m.logins-instagram.ga
Google 249 accounts.google-2fa.com
Facebook 198 sign-in.facebookes.com
Outlook 92 login.outlooks-mail.com
Paypal 84 paypalsecured.com
Apple 76 apple.icloud.com.sssl.host
Twitter 63 login.mobiletwitter.tk
Coinbase 56 googletag.coinbasel.com
Yahoo 50 yahoo.com.msg-inbox.ga
Linkedin 41 linkedin.com.securelogin.xyz

We find that over 40% of MITM phishing websites in our dataset
remain online for more than one day, with approximately 15% re-
maining online for over 20 days.
Targeted Brands and Phishing Campaigns
Through analysis of passive DNS data, we find that 339 (27%) do-
mains associated with MITM phishing toolkits in our dataset are
co-located on the same IP address as a benign domain, and 23
domains are co-located with at least one other domain tagged as
malicious by the domain blocklists reported by VirusTotal. This in-
dicates that attackers typically acquire dedicated infrastructure, or
reuse existing malicious infrastructure, for their campaigns rather
than compromise existing domains. This contrasts prior work on
traditional phishing campaigns which report that half of all phish-
ing domains resolve to IP addresses of legitimate websites [31].

Over the course of our study, we discovered 19 trademarks tar-
geted by MITM phishing toolkits. However, we find that a subset
of brands are disproportionately targeted—the top five most tar-
geted attracting 67.1% of all MITM phishing websites in our dataset.
Table 4 shows the number of MITM phishing websites discovered
together with example impersonating domains targeting popu-
lar trademarks in our dataset. Furthermore, Figure 9 presents the
distributions of impersonating domain types targeting the most
popular trademarks we monitor. The domain names associated
with MITM phishing toolkits we observed fall into three categories:
combosquatting (e.g. paypalhelp.com), target embedding (e.g. lo-
gin.paypal.com.attacker.com), and typosquatting (e.g. paypl.com).
Domain distributions can vary greatly depending on the trademark,
where domains impersonating Yahoo were almost entirely target
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Figure 9: Types of phishing domain names targeting popular
trademarks in our dataset.

embedding, while 70% of Paypal domains were combosquatting.
Finally, Table 5 shows the distribution of top-level domains (TLDs)
in our dataset. We observe that the domains with the .com TLD are
the most common. Since gTLDs typically require substantial costs
to register, their common presence in our dataset suggests that the
discovered MTIM phishing toolkits were used in real (and most
likely targeted) phishing attacks where believability of the domain
is vital and therefore justify the increased domain-registration costs.

Phishing Blocklist Presence

By querying popular phishing blocklists, we discover that most
MITM phishing websites our crawler discovered are missing from
these lists. In total, only 43.7% of positively labeled URLs in our
dataset are listed as malicious by at least one domain blocklist re-
ported by VirusTotal [25]. Furthermore, it takes on average seven
days after our crawlers discover a MITM phishing website, for these
URLs to be labeled as such. This is substantially longer than tra-
ditional phishing campaigns, which previous work has shown are
detected by blocklists after only nine hours [52]. Additionally, we
find that only 18.9% of IP addresses associated with MITM phishing
toolkits appear on at least one IP blocklist reported by VirusTotal.
This suggests that attackers use fresh IP addresses and domains to
launch attacks and quickly move before they are discovered.

MITMPhishing Toolkit Cloaking
Our results demonstrate that due to cloaking and their highly-
targeted nature, the phishingwebsites supported byMITMphishing
toolkits are able to remain hidden from the scanners that feed popu-
lar blocklists. This affords attackers withmore time to inflict damage
on a greater number of victims and decreased resource costs.

Our use of domain names from Certificate Transparency pre-
vents us from obtaining the tokenized URLs, and in turn, seeing
phishing content from Evilginx deployments (described in Sec-
tion 3.2). Thus, we observed a diverse set of cloaking responses
to requests towards MITM phishing websites in the wild. Of the
1,220 MITM websites discovered, 14.8% did not perform any cloak-
ing, 19% redirected visitors to the legitimate website of the victim
service (e.g. a phishing page targeting PayPal redirecting users to
the real PayPal website), and 66.2% redirected visitors to arbitrary
destinations, such as, pages served by google.com.

Table 5: Number of MITM phishing websites discovered per TLD

Rank TLD Domains Rank TLD Domains

1 com 376 6 gq 59
2 ga 124 7 net 51
3 ml 97 8 xyz 50
4 tk 87 9 org 36
5 cf 84 10 Other 256

4.3 Case Study: MITM
Phishing Attacks in an Enterprise Setting

To study the real-world effects of MITM phishing attacks and com-
pare the performance of our detection infrastructure to a com-
mercial phishing detection solution, we partnered with Palo Alto
Networks (PAN). Their in-line vantage points to network commu-
nications and large enterprise-customer base provides detailed in-
sights into real world phishing attacks. While PAN deploys various
web scanners and state-of-the-art phishing detection techniques,
we show that our solution adds a significant amount of exclusive
detections to their phishing coverage.

We provided a list of all 1,220 MITM phishing hostnames to PAN
to determine when each was active based on entries from their anti-
phishing database, and to enrich their database with new phishing
URLs. In total, we find that 57.6% of MITM phishing domains discov-
ered by our infrastructure were labeled as either explicitly malicious
or highly likely to be malicious by PAN scanners. Furthermore, of
the domains listed as such, 15.1% were given their respective label
at least one week after our infrastructure discovered it.

PAN researchers investigated the remaining URLs (42.4%) that
were absent from their anti-phishing database and found one of the
reasons to be cloaking mechanisms of the MITM phishing toolkits
preventing their scanners from observing malicious content. In par-
ticular, they observed a campaign redirecting towards legitimate
URLs of streaming services, either not being weaponized at the time
of the analysis or not detected due to cloaking. Moreover, by using
our tool, PAN found another two phishing hostnames targeting
their users with a similar cloaking behavior. These results highlight
that content-based phishing detection techniques can be thwarted
by cloaking. However, our methodology mitigates these issues by
focusing entirely on network-level features. After conclusion of this
experiment, PAN is implementing PHOCA into their infrastructure
in order to capture future MITM phishing toolkit instances.

In addition, we observe that enterprise users are currently being
targeted byMITM phishing toolkits. PAN provided us with statistics
on the number of their clients that visited eachMITM phishing web-
site. Over a 6 month period they captured 6,403 requests directed
towards 260 of our identified MITM phishing websites, logged from
368 distinct firewall devices. On average, each MITM phishing web-
site received 25 requests (as recorded by PAN’s middleware), with
the most popular site receiving 4,728 requests by their clients. We
find that attacks from MITM phishing toolkits are prevalent in the
wild and are currently affecting real users. Moreover, while MITM
phishing toolkits by their nature are geared towards highly-targeted
attacks, some real world attacks result in large numbers of users
falling victim.



5 SERVER SIDEMITMPHISHING TOOLKIT
FINGERPRINTING

In previous sections, we showed that it is possible to fingerprint
deployments of MITM phishing toolkits from the point of view of a
client. Even though this fingerprinting is valuable because it allows
scanning tools to now identify these types of toolkits in the wild,
the users who are targeted by these campaigns will not benefit from
this fingerprinting until these sites are added to popular blocklists.

In this section, we explore the fingerprintability of these MITM
phishing toolkits, from the perspective of the target web server. A
web server that is able to differentiate between benign requests and
those originating from a MITM phishing toolkit will be able to flag
the latter and protect end users, even if these users are not aware
that they are interacting with a MITM phishing server.

5.1 TLS Fingerprinting
Since data in the application layer is under complete control of the
attacker, classic browser-fingerprinting methods will not suffice
to determine the presence of a MITM phishing toolkit from the
perspective of a targeted web server. For instance, as all JavaScript
is executed on the victim’s device, fingerprinting scripts would
return information about the victim rather than the toolkit.

We therefore seek to fingerprint MITM phishing toolkits at the
TLS layer of the network stack. These toolkits are built for the
explicit purpose of phishing authentication details and do not make
use of typical web-client software. As a result, the TLS stacks uti-
lized to communicate with target servers are not the common stacks
that web servers typically observe from their users. Additionally,
since these toolkits forward all HTTP request headers to the target
web server, there are discrepancies in the TLS fingerprint when
compared to the reported device and browser in the User-Agent.

To determine the uniqueness of the TLS implementations of
the MITM phishing toolkits studied, we implemented a web page
that records the HTTP request headers, IP address, and JA3 TLS
Fingerprint [10] of each client. JA3 fingerprints are created by con-
catenating each field of the TLS Client Hello packet and computing
the hash of the resulting string. This produces a unique identifier
which can be used to tag TLS implementations and identify clients.

To characterize the distribution of TLS stacks of regular users,
we purchased 13,000 advertising impressions from a popular adver-
tising service. For each impression, the user’s browser connects to
a server under our control over the HTTPS protocol, allowing us
to obtain the aforementioned TLS fingerprint as well as the user’s
HTTP User-agent header. Our web page contained a simple mes-
sage that was completely unrelated to our study. Specifically, the
web page echoed CDC guidelines related to curbing the transmis-
sion of COVID-19, i.e., encouraging users to wash their hands and
practice social distancing. We did not ask users to provide any input
(PII or otherwise), did not offer downloads, and did not send them
any cookies or JavaScript code during these interactions.

5.2 Server Side TLS Fingerprinting Results
Through this process, we recorded 163 JA3 TLS fingerprints of
various clients, corresponding to 4,311 distinct HTTP User-Agents.
The distribution of device platforms and browsers of our TLS fin-
gerprinting dataset is presented in Table 6. Our dataset consists

Table 6: Distribution of TLS fingerprints collected by device platform
and browser, as reported via User-Agent headers.

Platform Versions Browsers Versions Combinations

iOS 60 5 39 130
Mac OS 39 7 72 178
Android 37 5 135 460
ChromeOS 16 1 15 16
Windows 8 7 165 254
PlayStation 3 1 1 3
Linux 2 4 47 51
Totals 165 30 474 1092

of a wide range of device platforms, including mobile and desktop
operating systems, and browsers. For each platform and browser
type we also record a diverse distribution of versions. Overall, our
dataset encompasses a large percentage of device platforms and
browsers used today. We find that the JA3 fingerprints of the MITM
phishing toolkits studied are unique in our dataset.

To reinforce our findings, we searched for the JA3 fingerprints of
MITM phishing toolkits in the ja3er.com [11] fingerprint database.
This database contains over 75 thousand unique fingerprints from
a wide variety of platforms. We found 745 HTTP User-Agents that
shared a TLS fingerprint with one of the three MITM phishing
toolkits. However, we are only interested in finding collisions be-
tween the JA3 TLS fingerprints of MITM phishing toolkits and web
browsers utilized by real users. We therefore filter this list of 745
HTTP User-Agents to remove any web bots.

Close inspection of all colliding User-Agents revealed a majority
to be benign web bots utilizing the same Golang TLS libraries as
MITM phishing toolkits. These web bots announce their identities
in their User-Agent strings, often times with a link to a website
explaining the purpose of the bot. The remaining User-Agents
claimed to be popular browsers, but we determined these to be
spoofed through manual verification of each User-Agent. We deter-
mined a User-Agent to be spoofed by either observing errors in the
User-Agent string (e.g. misspelling of browser name), observing
discrepancies in the reported browser and TLS fingerprint (i.e. the
reported browser does not support a TLS feature claimed by the
fingerprint), observing that the TLS fingerprint is an outlier com-
pared to all other TLS fingerprints associated with the User-Agent,
or manually recreating the JA3 fingerprint of the reported browser.

We conclude that the TLS fingerprints of MITM phishing toolkits
are unique when compared to the fingerprints of popular browsers
used by real web clients. It is therefore possible for a web server
to distinguish the requests from MITM phishing toolkits from the
benign requests of popular browsers with high accuracy, using
only TLS fingerprints. Since the TLS fingerprints of these toolkits
match only those of web bots utilizing the same Golang TLS li-
braries, it is safe for web servers to assume authentication requests
from clients sharing one of these TLS fingerprints are suspicious,
and should prompt closer inspection of all subsequent requests or
further action from the user.

6 DISCUSSION
Due to the ubiquitous presence of online services in our lives, phish-
ing campaigns remain a constant threat. Users who fall victim to



these attacks face serious financial and personal repercussions due
to the sensitive nature of stolen information. Furthermore, brands
targeted by these attacks see a deterioration in their reputation
among their user base, who may view a phishing campaign as a
sign of insecure systems. MITM phishing toolkits magnify these is-
sues by allowing attackers to launch highly sophisticated campaigns
in which users are presented with web pages indistinguishable to
those of the targeted brand. It is therefore of the utmost importance
to develop tools and methodologies to defend against these attacks,
in order to stop them before damage can be done.

6.1 Key Takeaways
• MITMphishing toolkit fingerprinting: The real-time traffic-
proxying of MITM phishing toolkits that allows them to launch
powerful phishing attacks, also exposes them to fingerprinting
that is not available for traditional phishing techniques. In this
paper, we demonstrated the effectiveness of using network-layer
features to detect MITM phishing toolkits (Section 3), with the
resulting classifier able to detect a large range of MITM phish-
ing toolkits, including those utilizing cloaking techniques. Ad-
ditionally, the responsibility of detecting these campaigns can be
distributed to both sides of the tainted communication channel,
thereby greatly increasing the probability of identifying mali-
cious content early in its life cycle.

• Classification in the wild: Over the course of our longitudinal
study, we discovered 1,220 MITM phishing toolkits targeting pop-
ular trademarks such as Google, Facebook, and Yahoo. Moreover,
by collaborating with Palo Alto Networks, we identified that
enterprise users are being targeted by MITM phishing toolkits.

• Blindspot in phishing blocklists: The cloaking mechanisms
utilized by MITM phishing toolkits severely decrease the effec-
tiveness of crowd-sourced blocklists (56.3% of the discovered
URLs were missing from all evaluated blocklists). Phishing block-
list services must take a more proactive approach in discovering
phishing content. We show that monitoring Certificate Trans-
parency logs for impersonating domain names is a successful
approach to uncovering otherwise hidden phishing websites.

• Mitigations: As we have discussed, the phishing content that
victims receive from MITM phishing toolkits is directly from the
targeted website. Thus, online services could include integrity
checks within the web page source. This code could ensure the
domain in the URL bar matches that of the real service, and reject
authentication if it is not. However, as attackers have full control
over application content, payload integrity cannot be ensured.
If an attackers knows a particular service uses such application-
layer integrity checks, they could simply remove this code prior
to sending it to the victim. We do note however, that while it is
possible for attackers to bypass these integrity checks, it is not
trivial as online services can consistently change the signature
of this code to thwart static analysis by attackers.
As a more robust counter-measure, online services should simply
use separate communication channels to complete 2FA. For in-
stance, users could be sent a rendezvous URL through a second,
secure communication channel, such as email. Users would then
submit their 2FA code to the form located on this web page rather
than the one presented by a MITM phishing toolkit. Similarly,

Universal Two Factor (U2F) can be used to mitigate these attacks.
As the generated key is bound to the domain of the intended on-
line service, keys generated during authentication with a MITM
phishing toolkit will be invalid.

6.2 Limitations
Our analysis should be considered alongside certain limitations.
Since this is the first investigation of MITM phishing toolkits, when
developing our classifier, we lacked real world ground-truth data
from these types of toolkits. We remedied this by creating our own
dataset, as described in Section 3.4. It is difficult, however, to create
a completely representative dataset modeling discrepancies intro-
duced by individual attackers, or the creation of new toolkits, from
a laboratory setting. For instance, an attacker that places a MITM
phishing toolkit behind an extra layer of redirection, such as a load
balancer, will introduce additional packet RTT delays. Edge cases
such as this require further training data to effectively identify.
However, we show in Section 3.4 that training data can be quickly
and easily generated to update our classifier to match suchmodifica-
tions. Moreover, as our classifier includes network timing features
that are consistently present in reverse proxy-server deployments,
it is agnostic to many modifications made by attackers.

Additionally, due to the overwhelming volume of TLS certifi-
cates registered and logged to Certificate Transparency, as well as
resource limitations, we are unable to monitor all brands potentially
targeted by MITM phishing toolkits. Rather, we monitored a subset
of these brands based on their popularity and use of two-factor
authentication. Implementations of our methodology by large in-
stitutions can expand monitoring to a larger subset of brands to
discover more phishing websites.

Lastly, while we show that our fingerprinting technique is highly
effective against MITM phishing toolkits, it is unable to discover
traditional phishing websites. This is a strength of visual phish-
ing detection compared to our approach. However, we note that
PHOCA can be easily implemented into existing anti-phishing ser-
vices, and should be used as an additional tool beside visual phishing
detection, rather than a replacement to it.

6.3 Ethical Considerations and
Responsible Disclosure

We took special care to ensure that PHOCA’s probes are not intru-
sive and disruptive to the websites being analyzed. Each visit by our
crawler results in a limited number of network requests ranging
from initiating TCP and TLS handshakes to HTTP GET requests.
Our crawler does not probe for vulnerabilities or use excessive
server resources. Our only interaction with users was for deter-
mining the distribution of TLS stacks in the wild. As described in
Section 5.1, our experiment collected the TLS Client-Hello message
and the User-Agent header of each user, something that users vol-
unteer to each and every website they visit on a daily basis. No PII
or other user-provided information was requested and we did not
make use of either stateful (e.g. cookies) or stateless (i.e. browser
fingerprinting) tracking techniques.

In order to strengthen existing anti-phishing efforts, we have
contacted a number of parties to disclose our findings. We have
reached out to phishing blocklist services to share the URLs we



discovered and ensure they make it onto widely-used blocklists.
We also shared the information on the blind spots that currently
exist in phishing blocklists as well as steps they can take to uncover
MITM phishing websites. Finally, through our collaboration with
Palo Alto Networks and their decision to adopt our technology, we
are confident that employees of thousands of companies will be
more protected against phishing attacks.

7 RELATEDWORK
To the best of our knowledge, this work is the first to present a
comprehensive study on MITM phishing toolkits, their fingerprint-
ability, and potential defenses against them. In this section, we
briefly discuss prior work on phishing ecosystem measurement and
analysis, as well as network fingerprinting.

Phishing EcosystemAnalysis

Previous work has measured the overall lifespan of phishing web-
sites to determine their effectiveness as well as the effectiveness of
phishing blocklists. In 2020, Oest et al. proposed a framework to
detect phishing against the infrastructure of a particular brand us-
ing HTTP referrer headers, allowing them to measure the complete
lifespan of phishing web pages [52]. Han et al. studied the lifespan
of phishing attacks deployed on honeypots, discovering that the
average lifetime of phishing websites is eight days [36]. Sheng et
al. studied the effectiveness of phishing blocklists, finding that the
majority of phishing campaigns last less than two hours before
detection [55]. Oest et al. examined the cloaking functionalities of
phishing kits and how they affect the response time of phishing
blocklist services [49, 51].

In this paper, we study a specific class of phishing toolkits that
provide attackers with powerful evasion abilities due to the prox-
ying of content live from the target website.

Phishing Attack Detection andMitigation

Previous works have proposed detecting phishing websites based
on the visual perception of web pages. This has been done through
matching the perceptual features of phishing web pages to those of
legitimate websites [27, 28, 46]. Visual differences in web pages of
the same website have also been used to detect phishing content on
compromised domains [34]. Prior work has also explored analyzing
domain names and URLs for features indicative of phishingwebsites.
To decrease the reaction time of phishing blocklists, efforts have
been taken to detect the registration of phishing domain names
in real time [37, 42, 43]. Similarly, prior work has proposed using
features from URLs to classify phishing websites [32, 41, 53], as well
as a combination of URL features and web page content [39, 44, 61].

Ulqinaku et al. demonstrated a system to mitigate 2FA phishing
attacks by utilizing the user’s smartphone to verify the URL in the
user’s browser [58]. When authenticating with an online service,
an encrypted JavaScript payload must be decrypted using a key
sent from the mobile device over Bluetooth and executed by the
user’s browser. The output of this script, a string representing the
current URL, is sent back to the mobile device and verified before
authentication can be completed.

In contrast to prior work, we propose techniques to detect MITM
phishing websites using features independent of attacker controlled
content from the perspectives of the client and targeted web server.

Proxy Server Fingerprinting
Attackers can use proxy servers to silently steal or modify data
in transit. Thus, prior work has proposed methods to fingerprint
proxy servers using the discrepancies they introduce. For instance,
techniques have been presented to detect transparent forward and
reverse proxies by analyzing transport and application layer re-
sponses to a set of probing requests [47, 60]. Further, analysis of
network timing discrepancies has been used to determine the pres-
ence of HTTP reverse proxies in network communications [29, 59].

In this work, we propose a classifier that determines the presence
of MITM phishing toolkits using a combination of network timing
analysis with TLS fingerprinting. Timing analysis of packet RTTs
is a robust method to fingerprint these toolkits, however including
TLS fingerprinting strengthens our classifier, further increasing its
robustness to attacker modifications.

8 CONCLUSION
MITM phishing toolkits magnify the damage caused due to phish-
ing by enabling attackers to launch highly sophisticated campaigns,
that appear visually indistinguishable to their victims. However,
the aspect of these toolkits that make them as effective as they are,
traffic proxying, is also their greatest weakness. Due to the network
architecture of these malicious reverse proxy servers, discrepancies
in network-level features can be used to infer their presence.

In this paper, we showed that it is possible to identify these tools
at a network level, and proposed a classifier capable of detecting the
presence of a MITM phishing toolkit with 99.9% accuracy. We also
create a fingerprinting tool, called PHOCA, to automatically col-
lect data on, and detect MITM phishing toolkits on the web. Using
PHOCA, we monitored popular phishing blocklists and Certificate
Transparency logs for 365 days, discovering 1,220 websites powered
by MITM phishing toolkits targeting major brands. We found that
these websites are hosted on dedicated malicious servers and are
largely absent from popular URL blocklists. Through our collabora-
tion with Palo Alto Networks, we demonstrate the real-world pres-
ence of MITM phishing toolkits, observing 6,403 customer requests
towards 260 of these toolkit deployments over a six-month period.

Finally, next to client-side fingerprinting, we also presented a
methodology that targeted brands can use to detect malicious re-
quests originating from MITM phishing toolkits using TLS finger-
printing. From a survey of 4,311 distinct device User-Agents, the
TLS fingerprints of MITM phishing toolkits are unique, and thus
fingerprintable from network requests alone.

Availability:To help security researchers andmaintainers of phish-
ing blocklists, we are open-sourcing PHOCA and our curated datasets.
Moreover, we are making available our code for creating testing
environments across globally-distributed public clouds (described
in Section 3.4) so future research can obtain timing measurements
from all current and future MITM phishing tools. All code and data
can be found at https://catching-transparent-phish.github.io
Acknowledgements:We thank our shepherd Sooel Son and the
anonymous reviewers for their helpful feedback. This work was
supported by the Office of Naval Research (ONR) under grant
N00014-20-1-2720, as well as by the National Science Foundation
(NSF) under grants CMMI-1842020, CNS-1813974, CNS-1941617,
and CNS-2126654.
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9 APPENDIX

1 proxy_hosts :
2 - { phish_sub : '', orig_sub : '', domain: 'twitter.com',
3 sess ion : t r u e , i s_ landing : t r u e }
4 - { phish_sub : 'abs', orig_sub : 'abs',
5 domain: 'twimg.com'}
6 - { phish_sub : 'api', orig_sub : 'api',
7 domain: 'twitter.com'}
8 sub_ f i l t e r s : [ ]
9 auth_tokens :
10 - domain: '.twitter.com'
11 keys: [ 'kdt','_twitter_sess ','twid','auth_token ' ]
12 c redent i a l s :
13 username:
14 key: 'session \[ username_or_email \]'
15 search : '(.*)'
16 type : 'post'
17 password:
18 key: 'session \[ password \]'
19 search : '(.*)'
20 type : 'post'
21 login :
22 domain: 'twitter.com'
23 path: '/login'
24 j s _ i n j e c t :

Listing 1: Example configuration file for Evilginx specifying
options for a Twitter phishing web page

Table 7: Full feature set of our 2FA phishing toolkit classifier

Feature Name Feature Type

Network Timing Features

TCP SYN/ACK RTT Numeric
TLS Client Hello RTT Numeric
Malformed TLS Client Hello RTT Numeric
TLS Handshake Timing Numeric
HTTP GET Request Timing Numeric
HTTP GET Request w/o Host Header Timing Numeric
Malformed HTTP GET Request Timing Numeric
HTTPS GET Request Timing Numeric
HTTPS GET Request w/o Host Header Timing Numeric
Malformed HTTPS GET Request Timing Numeric
TCP SYN/ACK to HTTP GET Request Timing Ratio Numeric
TCP SYN/ACK to Malformed HTTP GET Request Timing Ratio Numeric
TCP SYN/ACK to Malformed HTTPS Get Request Timing Ratio Numeric
Malformed to Valid HTTPS GET Request Timing Ratio Numeric

TLS Versions Supported

SSLv2 Binary
SSLv3 Binary
TLSv1 Binary
TLSv1.2 Binary
TLSv1.3 Binary

TLS Library

Apache Tomcat 7.0.53 Numeric
Apache Tomcat 7.0.54 Numeric

... 177 more TLS libraries ...
openssl 1.0.2a default source build Numeric
wolfSSL 3.4.0 Numeric

Table 8: Full set of trademarks our system received impersonating
domains for fromCertificate Transparency logs

Domain

Email Google, Yahoo, Outlook, Protonmail
Financial Paypal, Chase, Wells Fargo, Bank of America

HSBC, Citi Bank, Captial One, American Express
Social Media Facebook, Instagram, Twitter, Linkedin
Web Services Dropbox, Amazon, Github, Office 365
Technology Apple, Microsoft
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